

Engineering Simulation in the Cloud HPC, CAE, CFD

Art Sedighi, Ph.D. (Dr. S.)

Sr Partner Solutions Architect **AWS**

© 2023, Amazon Web Services, Inc. or its affiliates

HPC = High Performance Computing CAE = Computer Aided Engineering CFD = Computational Fluid Dynamics

Agenda

- Engineering Simulation Overview
- Why Cloud
- AWS Services
- Customer Success Stories (time permitting)

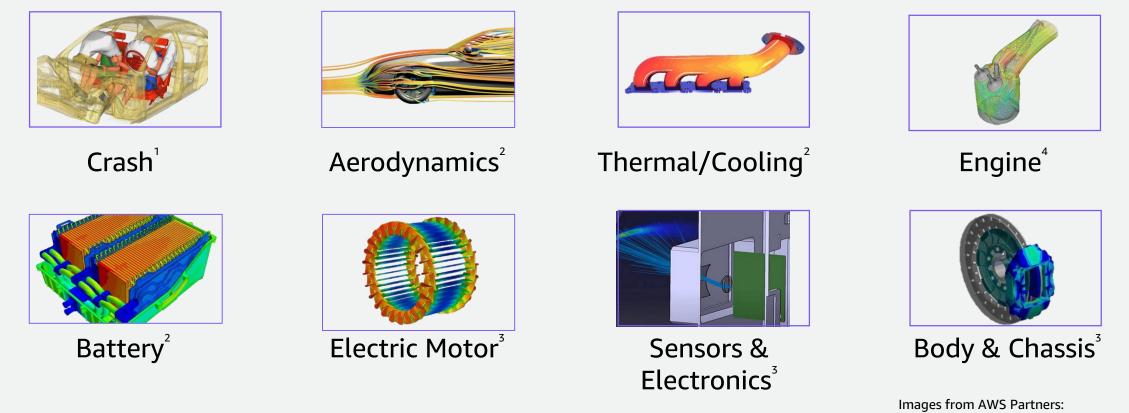
Engineering Simulation Overview

Engineering Simulation

Customers use Engineering Simulation for virtual testing of hardware products

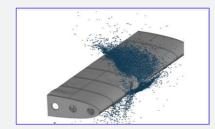
Also referred to as "Computer Aided Engineering" (CAE)

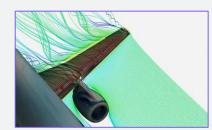
"High Performance Computing" (HPC) is infrastructure, services **needed for CAE**



Formula 1 Redesigns Car for Closer Racing and More Exciting Fan Experience by Using AWS HPC Solutions

Reference: https://aws.amazon.com/solutions/case-studies/formula-1-graviton2/

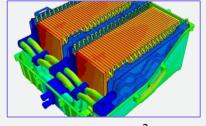

Automotive customers use engineering simulation extensively

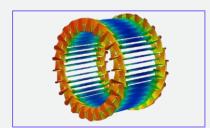

- 1. <u>www.altair.com</u>
- 2. <u>www.plm.automation.siemens.com</u>
- 3. <u>www.ansys.com</u>
- 4. <u>www.convergecfd.com</u>

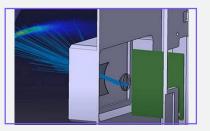
© 2023, Amazon Web Services, Inc. or its affiliates.

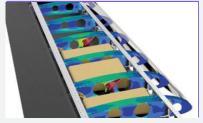
Aerospace customers use engineering simulation extensively

Impact¹


Aerodynamics¹

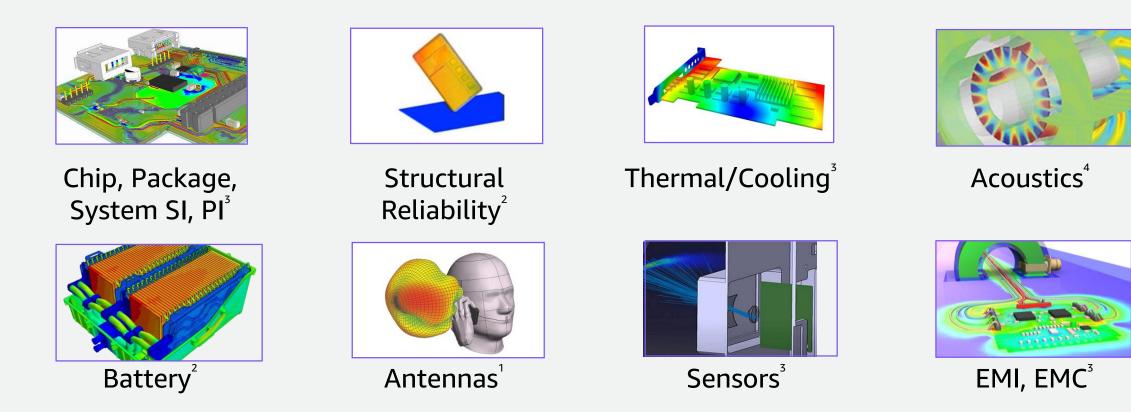

Thermal/Cooling²


Engine³


Battery²

Electric Motor¹

Sensors & Electronics¹


Aero Structures³

Images from AWS Partners:

- 1. <u>www.ansys.com</u>
- 2. <u>www.plm.automation.siemens.com</u>
- 3. <u>www.altair.com</u>

High Tech customers use engineering simulation extensively

Images from AWS Partners:

- 1. <u>www.altair.com</u>
- 2. www.plm.automation.siemens.com
- 3. <u>www.ansys.com</u>
- 4. <u>www.hexagon.com</u>

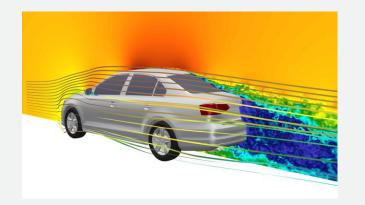
Engineering Simulation is done with partner apps

Example apps	Fluid Simulation	Structural Simulation	Electromagnetics Simulation	
Method Name Software Provider	Computational Fluid Dynamics (CFD)	Finite Element Analysis/Method (FEA/FEM)	Finite Element Analysis/method (FEA/FEM)	
Altair	AcuSolve, uFX	Radioss, Optistruct	Feko	
Ansys	Fluent, CFX	Mechanical, LS-Dyna	Maxwell, HFSS	
Dassault Systems	PowerFLOW	Abaqus	CST	
ESI	Ace+	PamCrash	Prosivic	
Hexagon	Cradle CFD	Nastran		
Siemens	Star-CCM+	Simcenter Nastran	Simcenter LF EM	
Others	Converge			

Engineering Simulation workloads are –

200% 150%

100%


0% -50%

-100%

96%

50% ځ

Large

e.g. One engineering simulation job can run on **1000 cores** for **hours**

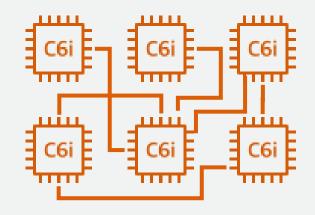
Designing one product needs**100s** of types of simulation**100s** of jobs per sim. type

100%

 C_d

98%

Numerous


One job

per dot

104%

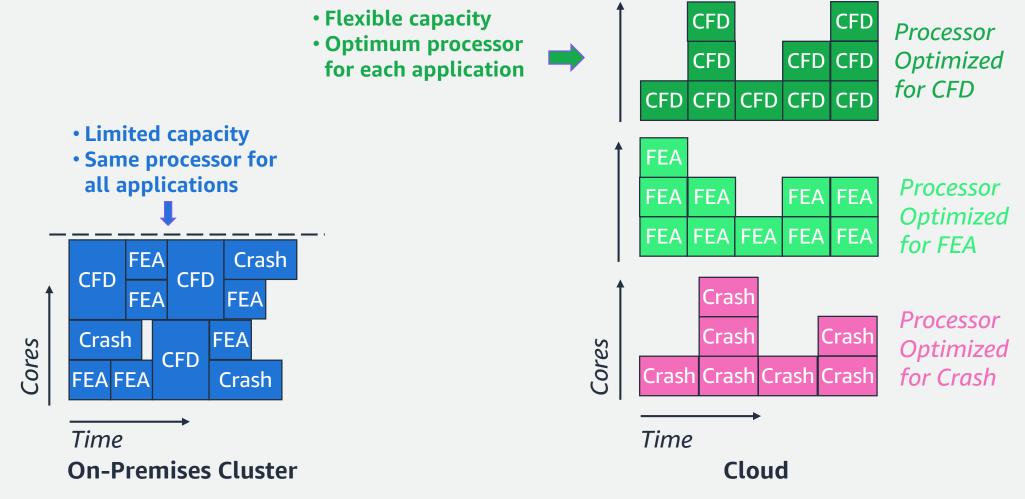
102%

Tightly Coupled

If a single core fails, the entire job fails

Images from case study: https://aws.amazon.com/partners/success/volkswagen-ag-altair/

Why Cloud for Engineering Simulation


HPC in the cloud has many benefits over HPC on-premise


Massive capacity of the cloud unlocks user productivity

Elasticity of the cloud provides business agility

Latest processors on the cloud provide best ROI for software license cost

On-Premises Cluster

Cloud

The cloud enables your teams across the globe

Worldwide

- Same infrastructure
- Same processes
- Same benefits

Manage all global deployment centrally

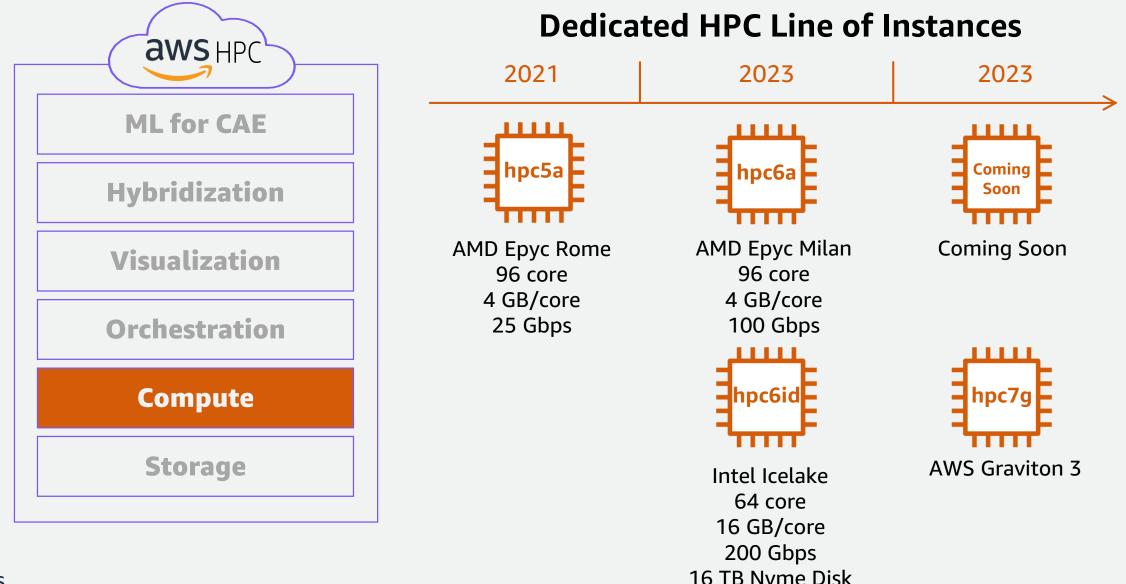
The cloud offers carbon footprint reduction opportunity

AWS can lower the carbon footprint of average on-premises data center workloads by nearly 80% today and up to 96% once AWS is powered with 100% renewable energy

Faster Product Development

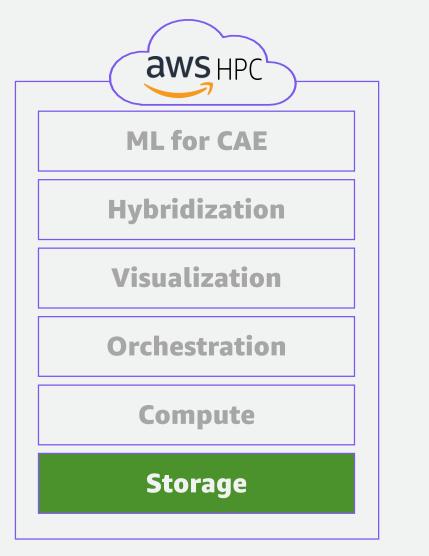
"For every \$1 spent on HPC, businesses see \$507 in incremental revenues and \$47 in incremental profit." *

* Hyperion ROI Study (http://www.hyperionresearch.com/roi-with-hpc/)


AWS Services for Engineering Simulation

ENGINEERING SIMULATION IN THE CLOUD		(intel)	(intel)	(intel)			aws	aws	aws
		Cascade Lake	Ice Lake	Sapphire Rapids	EPYC Rome	EPYC Milan	Graviton 2	Graviton 3	Graviton 3E
	PC ptimized occessor emory etwork sk		hpc6id.32xl 64 Cores 16 GB/Core 200 Gbps 16 TB		hpc5a.48xl 96 Cores 4 GB/Core 25 Gbps	hpc6a.48xl 96 Cores 4 GB/Core 100 Gbps			hpc7g.16xl (Coming Soon) 64 Cores 2 GB/Core 200 Gbps
Hybridization Or	ompute ptimized ocessor	c5n.18xl 36 Cores	c6i.32xl c6id.32xl 64 Cores		c5a.24xl c5ad.24xl 48 Cores	c6a.48xl 96 Cores	c6gn.16xl	c7g.16xl 64 Cores	c7gn.16xl
	emory etwork sk	5.3 GB/Core 100 Gbps	4 GB/Core 50 Gbps 7.6 TB		4 GB/Core 20 Gbps 3.8 TB	4 GB/Core 50 Gbps	2 GB/Core 100 Gbps	2 GB/Core 30 Gbps	2 GB/Core 200 Gbps
Orchestration	lemory ptimized ocessor	r5n.24xl r5dn.24xl 48 Cores	r6i.32xl r6id.32xl 64 Cores	r7iz.32xl	r5a.24xl r5ad.24xl 48 Cores	r6a.48xl 96 Cores	r6g.16xl r6gd.16xl 64 Cores		
	emory etwork sk	16 GB/Core 100 Gbps 3.6 TB	16 GB/Core 50 Gbps 7.6 TB	16 GB/Core 50 Gbps	16 GB/Core 20 Gbps 3.6 TB	16 GB/Core 50 Gbps	8 GB/Core 25 Gbps 3.8 TB		
Storage Pu Pro	eneral urpose ocessor	m5n.24xl m5dn.24xl 48 Cores	m6i.32xl m6id.32xl 64 Cores		m5a.24xl m5ad.24xl 48 Cores	m6a.48xl 96 Cores	m6g.16xl m6gd.16xl 64 Cores		
	emory etwork sk	8 GB/Core 100 Gbps 3.6 TB	8 GB/Core 50 Gbps 7.6 TB		8 GB/Core 20 Gbps 3.6 TB	8 GB/Core 50 Gbps	4 GB/Core 25 Gbps 3.8 TB		

aws HPC							
ML for CAE							
Hybridization	GPU Accelerated	nVIDIA. p4d.24xl	p4de.24xl	DVIDIA 。 p3dn.24xl	nvidia. g5.48xl	NVIDIA 。 g4dn.12xl	NVIDIA .g4dn.metal
Visualization	GPU Type GPUs GPU Memory	Nvdia A100 8 GPUs 40 GB/GPU	Nvdia A100 8 GPUs 80 GB/GPU	Nvdia V100 8 GPUs 32 GB/GPU	Nvidia A10 8 GPUs 24 GB/GPU	Nvidia T4 4 GPUs 16 GB/GPU	Nvidia T4 8 GPUs 16 GB/GPU
Orchestration	Processor Type Processor Memory		Intel CascadeLk 48 Cores 24 GB/Core		AMD EpycRome 96 Cores 4 GB/Core		
Compute	Network GPU Network Disk	400 Gbps 600 GBps 8 TB	400 Gbps 600 GBps 8 TB	100 Gbps Nvlink 1.8 TB	100 Gbps Gbps 7.6 TB	50 Gbps Gbps 0.9 TB	100 Gbps Gbps 1.8 TB
Storage							



Hpc6a

- First publicly available HPC focused instance
- **3x** better price-performance
- Available in US-Ohio, Gov-Cloud, EU-Stockholm, JP-Tokyo (not GA), AU-Sydney (not GA)

Technical Specifications: AMD 3rd Gen EPYC Milan processors, 96 cores, up to 3.6GHz frequency, and 384GB of RAM. Elastic Fabric Adapter (EFA) enabled by default at 100 Gbps

Amazon FSx for Lustre

Fully managed shared storage built on the world's most popular high-performance file system.

Amazon S3

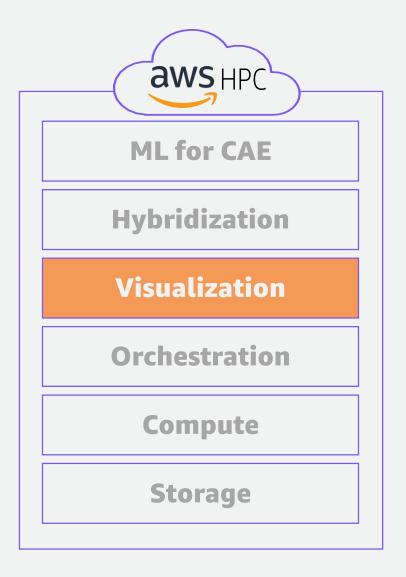
Object storage built to retrieve any amount of data from anywhere.

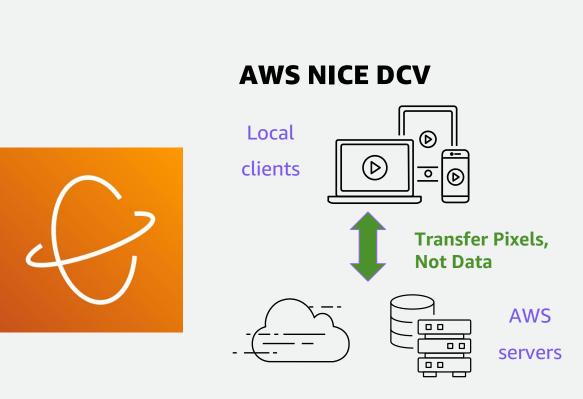
Amazon Elastic Block Store (EBS)

Easy to use, high performance block storage at any scale.

Amazon Elastic File System

Simple, serverless, set-and-forget, elastic file system.




AWS ParallelCluster

Simplifies deployment of HPC in the cloud, including integrating with popular HPC scheduler SLURM

Integrated with AWS Batch, Amazon FSx for Lustre and Elastic Fabric Adapter

Users can access, manipulate, and share businesscritical information, regardless of their location, over LAN or WAN networks

Thank you!

Art Sedighi, Ph.D. (Dr. S.)

asedig@amazon.com

