

Modeling and Simulation in Smart Manufacturing

HPC for Manufacturing Workshop LLNL, 2023 October 18-19

Haresh Malkani Chief Technology Officer

Jim Davis PI, Program Oversight

Topics

- CESMII's view on advanced sensing, control, platforms, and modeling (ASCPM) in Smart Manufacturing
- Smart Manufacturing requires the right data at the right time, in the right place, in the right format for human and machine actions.
- CESMII Projects have demonstrated benefits and shared methods (playbooks) in key industry verticals

Mission Strategy Role

Monetize Productivity, Precision, & Performance

at scale with Advanced Sensing, Control,

Platform, and Modeling for Manufacturing

Smart Manufacturing to drive next generation of U.S. Manufacturing Productivity and Environmental Sustainability

CESMII represents the **voice of manufacturing;** engaging the smart

manufacturing ecosystem through a membership model

Manufacturers Small, Medium & Large

100

System Integrators & Consultants

Technology Providers

Academia & Labs

Copyrightine 20023 CESMII Alinkights Reserved

(ACSPM)

How

Copyright © 2023 CESMII - All Rights Reserved.

Leveraging HPC in CESMII

Copyright © 2023 CESMII - All Rights Reserved.

Where HPC and National Labs can Collaborate

Project Examples where Modeling and ML has been used

Copyright © 2020 CESMII - All Rights Reserved.

Impacting Energy and Operational Performance Through Smart Manufacturing (SM) Technology, Innovation and Knowledge

Smart Manufacturing in Steel Continuous Casting

ArcelorMittal, RPI, Purdue, Missouri Science & Technology University

3D Sliding and Debonding Sensor

Liquid Core and Plugging Detection

Optical Strain Sensing

Continuous Caster Digital Twin

- Data acquisition infrastructure implemented and configured for caster health monitoring
- Advanced strain measurement and 3D displacement sensors to detect liquid core in continuous steel caster developed and tested
- Digital twin for simulating caster operation developed and demonstrated for maintenance applications
- Machine learning based model developed to predict caster plugging.

Significance and Impact: Realtime sensing and predictive modeling will improve caster performance and downstream product quality. Potential impact of \$90M in energy savings for steel industry from improved quality, and \$2M/strand from predictive maintenance.

Smart Manufacturing for Cement

University of Louisville, Argos USA

- Lab scale kiln constructed and instrumented with burner and sensors for conducting experiments
- Multi-physics thermal and flow models developed and validated with instrumented kiln
- Machine learning model developed to predict clinker quality based on operational parameters
 - Real-Time Process Assessment and Control System developed for energy optimization

Significance and Impact: Validated multi-physics predictive models will lead to optimized operating conditions contributing to up to 15% reduction in energy usage in production kilns

Smart Manufacturing in Chemical Industry

Texas A&M, Emerson, AspenTech, PSE, RPI, OSISoft, UT Austin

- Steady state and dynamic models (Digital twins) developed and validated for predicting operational behavior of Air Separation Unit (ASU)
- Surrogate models developed for ASU control application including fault detection, real-time optimization, scheduling and predictive control
- Real-time asset monitoring solution for the ASU and auxiliary equipment has been implemented
- Asset templates for ASU equipment developed

Significance and Impact: Predictive modeling and real-time monitoring for air separation units will lead to increase in operating efficiencies and energy savings worth \$10M/yr for one large manufacturer, with potentially similar impact to other manufacturers with similar ASUs.

Smart Manufacturing in Composite Brake Mfg

Virginia Tech, Honeywell, University of Virginia, Penn State University, Commonwealth Center for Adv. Mfg.

- Data acquisition and platform infrastructure developed
- Computational Models for Energy Consumption and Product Quality Prediction developed & validated
- Process anomaly detection algorithm developed and validated
- Physics based and data driven prediction models developed and validated for process optimization

Significance and Impact: Automated process monitoring and control will lead to a reduction of 15% in energy consumption for Honeywell's CVI process

Democratizing SMART MANUFACTURING

SMART ASSETS

SMART DECISIONS

OPERATIONS & SUPPLY CHAIN VISIBILITY

www.cesmii.org

info@cesmii.org

Copyright © 2020 CESMII - All Rights Reserved.

www.cesmii.org

Backup

Data Centered Smart Manufacturing

Asset Improvement	Distributed Ope	erations	Line Operation/ Factory Improvement		Data Supply Chain
Arcelor Mittal Hot Rolling & Casting Digital Twin & ML Productivity/Quality Steel	Argos Pyro-processing Digital Twin & ML Control Cement	Honeywell Aerospace Composite Brake Physics ML Quality Aerospace	<i>Rayonier</i> Moisture Defoamer Physics ML Productivity Pulp & Paper	Raytheon Precision Parts Physics ML Quality Additive Mfg	Linde Hydrogen Production ML and Digital Twin Thermal Treatment
<i>Linde</i> Air Separation Distributed Operations Physics ML Oil & Gas	General Dynamics Forging Heat Machining Digital Twin & Interoperability Metal	Nova Chem Ethylene Plant Al/ML Qualitative Diagnostics Chemical	Tyson Foods Energy Productivity Plant wide modeling Food	US Car Multi Source Multi System Interoperability Roadmap Automotive	Seagate & Coalition Machine Processes Data Sharing Semiconductor
General Mills Supply Chain Interoperability Agriculture	Johnson & Johnson Supply Chain Interoperability Pharma	J&J, General Mills, P&G Inter-Supply Chain Resilience Supply Chain	Small	Medium	Large Images Courtesy of
Supply Chain Interoperability		Supply Chain Resilience			Creative Commons

Copyright © 2023 CESMII - All Rights Reserve