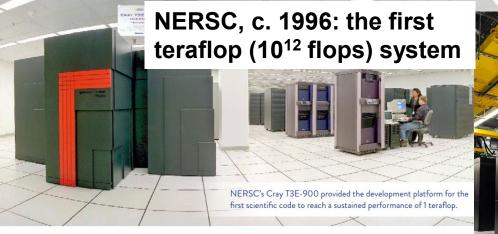


Shaping the Future of Manufacturing using HPC

Advanced Scientific Computing Research Dr. Steven Lee, DOE/SC


ASCR – Over 70 years of Advancing Computational Science

Beginnings: During the Manhattan Project, John Von Neumann advocated for the creation of a Mathematics program to support the continued development of applications of digital computing

ASCR has a rich history of investment in computational science and applied mathematics research, and revolutionary computational and network infrastructure.

Today, Frontier at OLCF: first to exascale (10¹⁸ flops)

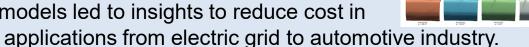
for the Rhor. AMD.7

WHY COMPUTATIONAL SCIENCE?

- Computational science added a third pillar to researcher's toolkit along side theory and experiments
- Valuable when experiments are too expensive, dangerous, time-consuming or impossible
- Facilitates idea-to-discovery that leads from equations to algorithms
- Virtually every discipline in science and engineering has benefited from DOE's sustained investments in computational science

ASCR Research: Key To Enabling DOE and SC Scientific Enterprise

Capitalizing on decades of basic research investments in applied math, computer science and computational partnerships, the ASCR community is well-equipped to tackle scientific and societal crises.

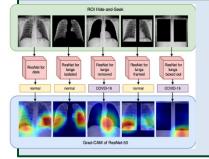


Discovery Science

ASCR's 20+ year SciDAC partnership with NP confirmed the prediction of the existence of tetraneutrons.

Lowering Energy Costs

Multi-scale mathematics algorithms and models led to insights to reduce cost in



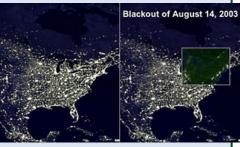
Optimizing Experiments

Optimization and machine learning methods provided real-time experiment steering at beamlines.

Foundations For the Future

Design and demonstration of the first ever Bell state analyzer enabled new quantum communication protocols.

Emergency Response


ASCR CS community's expertise propelled the application of deep learning methods for pandemic response.

> Office of Science

Decision Support

The first-ever physics based predictive models constrained the probability of cascading blackouts in power grid operations.

Exascale Computing Project (ECP) 6 Core DOE Labs **Exascale System** 100 R&D Teams DOE's Exascale Computing Initiative: A partnership between SC and deployment 1000 Researchers Frontier, Aurora, NNSA/ASC to accelerate R&D, acquisition, and deployment to deliver exascale El Capitan computing capability to DOE national labs by the early- to mid-2020s HARDWARE AND INTEGRATION APPLICATION DEVELOPMENT SOFTWARE TECHNOLOGY Integrated delivery of ECP products on targeted Develop and enhance the predictive capability of Expanded & vertically integrated software stack systems at leading DOE HPC facilities for capable exascale computing applications critical to DOE National security **Energy security Economic security** Scientific discovery Health care Earth system Additive Wind farms Earth system models Stockpile Astrophysics Cancer manufacturing Stewardship Small Modular **Biomass** Lattice QCD **Reentry-vehicles** Power grid Reactors Accelerators **Metagenomics** Seismic risk High-energy density Nuclear materials (DOE applications) **Materials** physics Subsurface Science Chemistry Combustion Fusion Clean fossil fuels On track for CD-4 in FY24 Standard Model **Biofuel catalysts**

Office of

Science

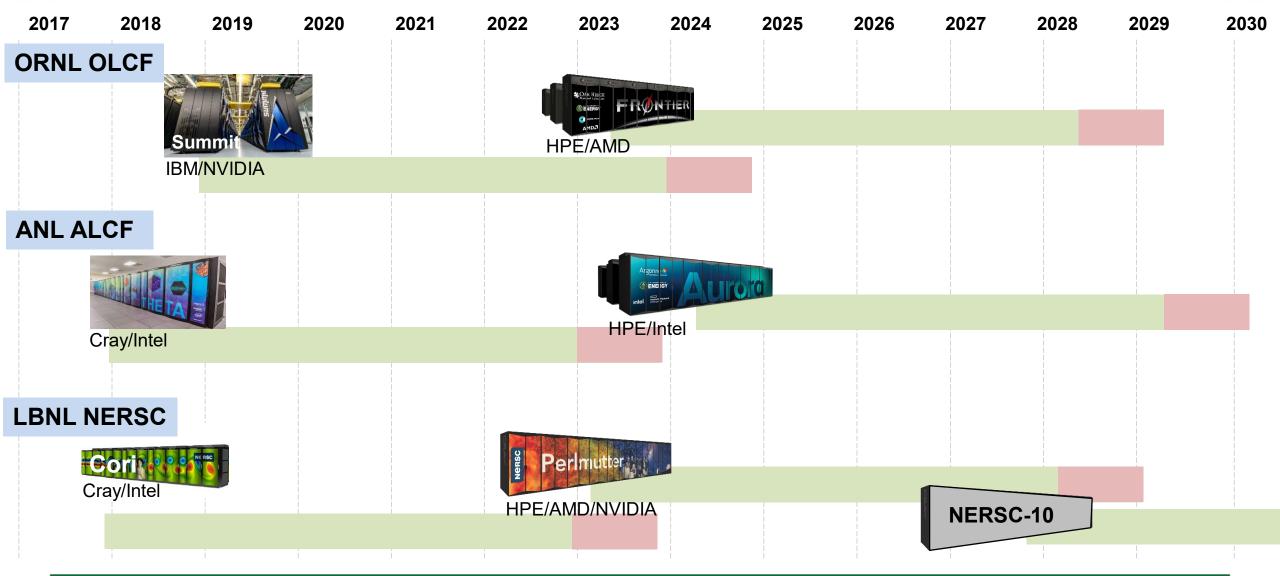
ERG

ECP Software Technology works on products that apps need now & in future/

Key themes:

- Focus: GPU node architectures and advanced memory & storage technologies
- Create: New high-concurrency, latency tolerant algorithms
- Develop: New portable (Nvidia, Intel, AMD GPUs) software product
- Enable: Access and use via standard APIs

Software categories:


- **Next generation established products:** Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
- Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
- New products: Enable exploration of emerging HPC requirements (e.g., zfp, Variorum)

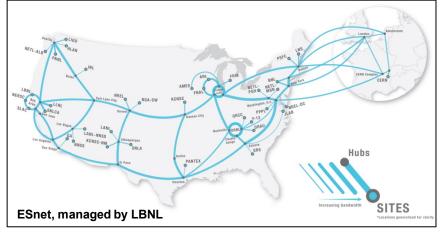
Example Products	Engagement 100
MPI – Backbone of HPC apps	Explore/develop MPICH and OpenMPI new features & standards
OpenMP/OpenACC –On-node parallelism	Explore/develop new features and standards
Performance Portability Libraries	Lightweight APIs for compile-time polymorphisms
LLVM/Vendor compilers	Injecting HPC features, testing/feedback to vendors
Perf Tools - PAPI, TAU, HPCToolkit	Explore/develop new features
Math Libraries: BLAS, sparse solvers, etc.	Scalable algorithms and software, critical enabling technologies
IO: HDF5, MPI-IO, ADIOS	Standard and next-gen IO, leveraging non-volatile storage
Viz/Data Analysis	ParaView-related product development, node concurrency

ASCR HPC system lifecycle timeline of current and planned systems

When "accepted," a system enters a five-year operations window; the red bar indicates a possible 6th year life extension.

ASCR Facilities provide world-leading computing, data, and networking infrastructure for extreme-scale science while advancing U.S. competitiveness

High Performance Computing Facilities: ALCF, OLCF, NERSC


Leadership Computing Facilities (ALCF, OLCF): Unique national HPC resources for extreme-scale applications, delivering the exascale (10¹⁸) era of supercomputing

High Performance Production Computing Facility (NERSC): Dedicated HPC resource for the Office of Science research community, serving many thousands of users annually

High Performance Network Facility: ESnet

Energy Sciences Network (ESnet):

Connects all DOE national labs and dozens of other DOE sites to 150+ global research networks, commercial cloud providers, and the internet

Engineered for lossless transmission of huge data flows

Examples of HPC4EI Projects using Exascale Computing Project software

Project Title	Company	National Lab	Codes
Additive Manufactured Composite Phase- Change Material for Thermal EnergyStorage Applications	Siemens Corporation, Technology	ORNL	MEUMAPPS-SL
HPC-enabled digital twin manufacturing for sustainable metalworking	ATI (Allegheny Technologies Inc)	LLNL	Serac/MFEM
Bioreactor Optimization through Multi- Phase Flow Models	Capra Biosciences, Inc	LBL	MFIX-Exa / AMReX
Multiphysics CFD simulations of CO2 solidification in a turboexpander unit- operation for the purpose of carbon- capture and sequestration	Carbon America	NREL	PeleC
Modeling solid electrolyte interphase formation and growth in Li-ion batteries using reactive molecular dynamics simulations.	Ford Motor Company	ANL	LAMMPS

DOE High Performance Computing Allocation Programs

	INCITE	ALCC	ERCAP	Director's Discretionary
Allocation Program Mission	Advance science and engineering	Advance DOE mission priorities; respond to national emergencies	Advance DOE Office of Science and SBIR/STTR research	Advance science and engineering
Allocatable Time	ALCF, OLCF: 60% NERSC: N/A	ALCF, OLCF: 30% NERSC: 10%	ALCF, OLCF: N/A NERSC: 80%	ALCF, OLCF: 10% NERSC: 10%
Managing Office	ALCF/OLCF	ASCR	DOE Office of Science Programs, SBIR/STTR	Each Facility
Award Duration	One year	One year (offset 6 months relative to INCITE)	One year	One year
Project Size (2022)	Avg: 0.8M node-hours Max: 2M node-hours	Avg: 0.4M node-hours Max: 1.68M node-hours	Avg: 20K node-hours Max: 0.7M node-hours	

ASCR Shapes the Future of Manufacturing through HPC ...

- **ASCR Research**: Applied Mathematics, Computer Science, Computational Science Partnerships
- ASCR Facilities: Leadership Class and High-End Computing Facilities, Energy Sciences Network
- **Exascale** Computing Facilities and Software Technology
- **DOE National Laboratory** Resources: Expertise, Software, High-Performance Computing Allocations, ...

THANK YOU

